Ethanol Production from Marine Algae Using Yeast Fermentation

Rachita Gupta, koel biswas and Ipsita Mishra. Dr. K.Suthindhiran

School of Bioscience and Technology, VIT UNIVERSITY, Vellore, Tamilnadu, India

ABSTRACT

Marine algae are microscopic photosynthetic organisms found in sea water and fresh water. They contain high amount of carbohydrates such as starch and cellulose. They also contain lipids and proteins. They have gained importance in the production of alternative source of fossil fuel. The extracted carbohydrates from marine algae can be used as a source for the production of ethanol. Algae are also the optimal source for second generation bio ethanol due to the fact that they are high in carbohydrates/polysaccharides and thin cellulose walls. In our work, we investigated the possible use of Saccharomyces cerevisiae VITTS-M2 for ethanol production using the carbohydrates extracted from marine algae. The algal sample was collected and carbohydrate was extracted. Extracted carbohydrate was used for fermentation using yeast culture and ethanol was produced. The fermented product, ethanol was distilled by using laboratory model distillation unit and measured qualitatively using HPLC chromatography in comparison with the standard analytical grade ethanol. The overall experimental data provided us the potential of marine algae in the production of ethanol.

KEYWORDS Ethanol Fermentation, Yeast, Marine algae.

INTRODUCTION

Ethanol is also known as grain alcohol. It can be made from barley and wheat or from cellulosic biomass such as wood, paper pulp or agricultural wastes (Thomas and Kwong, 2001). Large quantities of ethanol are used as solvent and chemical feed stock in various industries. Most of the industrial ethanol is currently produced from the catalytic conversion of ethylene. (Demirbas, 2010) Now in whole world amount of fossil fuel reduces to low amount due to various uses and becomes low in quantities. Within next 50 years no fossil fuel will be available in earth so these days considerable research has been focused on fermentation based ethanol production from various renewable biomass sources. (Ladisch and Svarczkopf, 1991; Worley et al., 1992; Sosulski and Sosulski, 1994; Ingledew et al., 1995; Wang et al., 1997).

Algae contains high amount of carbohydrate which is mostly polysachharide. Many valuable products such carrageenan, agar, astaxanthin and other dozens of valuable products are produced from algae. Incomparision, ethanol is low priced product. Algae biomass would serve as advantageous substrate for production of ethanol due to its ubiquitous nature. The fermentation of carbohydrate present in algae biomass, to ethanol is achieved by Saccharomyces cerevisiae. Algae are considered to be most important source for the production of clean and renewable energy. Some algae such as Sargassum, Glacilaria, Prymnesiumparvum, Euglena gracilis are promising candidates for ethanol production. Yeast metabolizes carbohydrates and produces CO2 and ethanol as metabolic end product in an anaerobic condition. This study was performed to determine the feasibility of using marine algae to produce ethanol.
Materials and methods

Sample Collection:
Samples (algal sample and yeast, Saccharomyces cerevisiae) were obtained from Marine Biotechnology and Biomedicine Lab, VIT University, Vellore.

Sample Identification:
samples were identified under microscope. One drop of water was added on the slide and then one specimen of algal culture was added and mixed well. Then coverslip was added over the specimen and observed under microscope.

Carbohydrate extraction:
50 ml of identified algal culture was taken in a centrifuge tube. 1:3 ratio of distilled water was added to the sample and centrifuged at 5000 rpm for 10 mins. Algae species were hydrolyzed in dilute 1 ml of 0.70% H2SO4 and were heated at 105°C for 6 hrs. Then the samples were neutralized by adding Ba2CO3. Samples were again centrifuged at 5000 rpm for 10 mins. Samples were then evaporated in water bath. Filtration process carried out to filter the extract.

Yeast used for Fermentation:
Saccharomyces cerevisiae VITS-M2 strain was used for fermentation process. This yeast strain was cultured in 100ml YEPD broth. Compositions of YEPD are as follows:- 10gm of yeast extract, 20gms of peptone, 20gms of dextrose. 5gm of YEPD powder was added to 100ml distilled water. After sterilization, Yeast strain was added to the YEPD broth and incubated for 48 hours in shaking incubator at 37°C.

Fermentation Technique:
Filtrate samples were added to the Yeast Saccharomyces cerevisiae VITS-M2 culture after 48 hours and again incubated for 24 hours at 37°C for production of bioethanol by Yeast fermentation process.

Confirmation Test of Ethanol production:

Litmus test:
Blue colour litmus paper was dipped in to the separated sample.

Iodoform Test:
Few ml of separated sample was taken in a test tube and 1% iodine solution was added. Then dilute sodium hydroxide was added as a drop until brown colour of iodine was discharged. Tube was then gently warmed on a water bath.

Ester Test:
Few ml of sample was taken in a test tube and 1ml of glacial acetic acid was added followed by addition of 2-3 drops of conc. H2SO4 was added. Then the mixture was warmed in an water bath for 10 mins. After that cold water was poured on to it.
Analysis of bioethanol from Marine algae:
The amount of pretreated marine algae sugar was measured by HPLC Chromatography. The supernatant was separated from the Fermented Yeast culture was analyzed for bioethanol content. The conc. of bioethanol was measured by using HPLC chromatography. Before measuring the supernatant was concentrated 20 fold prior to HPLC chromatography.

Result and Discussion:

Identification of Algae:
The algae which was identified under microscope from sample was found to be Chaetomorpha sp. Later this identified algal sample was taken and used for ethanol production. (Fig.1)

Fig 1. Microscopic views of Chaetomorpha sp.

Extraction of carbohydrate:
Dilute acid hydrolysis was carried out within 100-105°C for six hours in water bath by adding 0.70% dilute H2SO4 in algae sample. After this treatment followed by evaporation and filtration 4.6 gms of carbohydrate were extracted from 50ml of algae sample.

Confirmation Test of Ethanol production:
Litmus Test:
Blue Litmus paper was changed to red. It indicated the presence of ethanol in the sample.

Idoform Test:
Yellow precipitation was obtained which indicated the presence of ethanol.

Bioethanol Fermentation:
Saccharomyces cerevisiae VITS-M2 strain was inoculated in 100ml YEPD media and incubated for 48 hours. After 48 hours, Pretreated algae was added to the culture and again incubated for 48 hours. 85ml of ethanol was produced after fermentation process.
We compared the unknown sample with standard ethanol. The retention time of both are same. From this we confirmed that bioethanol was being produced from Chaetomorpha sp. by yeast fermentation.

Fig 2. HPLC analysis of unknown sample at 280 nm.

Fig 3. HPLC analysis of standard ethanol at 280 nm.
DISCUSSION
Bioethanol was produced using pretreated algal sugar as carbon source and Saccharomyces cerevisiae VITS-M2 culture as. Marine algae contains high amount of water. Pretreated algal biomass contains fewer monosaccharides than other lignocellulosic carbon source. But marine algae does not contain lignin so saccharification of marine algae is simpler than other lignocellulosic source.

Bioethanol was also produced from corn, wheat straw, sugar cane, rice straw and other crops. In many previous studies number of fermentation microrganisms are limited. Production rate of bioethanol is too low to commercialize. For example, low amount of ethanol was produced from Schizosaccharomyces pombe(KCCM11527) by using Saccharomyces cerevisiae (KCCM50550). (Soojin Lee & Younghoon Oh & Donghyun Kim & Doyeon Kwon & Choulgyun Lee & Jinwon Lee.) Therefore, in this study we presented new method for bioethanol production from marine algae.

Bioethanol fermentation from Chaetomorpha sp produced by Saccharomyces cerevisiae VITS-M2 resulted 85ml of ethanol which was higher than previous studies. (Sung-Mok Lee, Jae-Hwa Lee). Still bioethanol production from marine algae is long way to go to develop more completed and designed process. Our experiment ethanol production from marine algae using Yeast fermentation yield of 85ml of ethanol from 4.6 grams of biomass, demonstrate more developed and extended application to commercial production process.

CONCLUSION
This research determines the production of ethanol from marine algae using yeast fermentation. Extraction of carbohydrate or pretreatment of algae was carried out by dilute acid treatment. To obtain bioethanol, Saccharomyces cerevisiae VITS-M2 strain and pretreated algae sugars were used for this experiment. 85ml of ethanol was produced from extracted carbohydrate by yeast fermentation process from Chaetomorpha sp. The result of this experiment determine the potential of marine biomass and also demonstrate the ethanol productivity of marine algae using saccharification method. This experiment suggests new possibilities and techniques to improve the production of bio-energy by microrganisms.

ACKNOWLEDGEMENT
We thank the management, VIT University, Vellore for providing all the necessary facilities for carrying out this research work.

REFERENCE
5. Ladisch and Svarczkopf, 1991; Worley et al., 1992; Sosulski and Sosulski, 1994; Ingledew et al., 1995; Wang et al., 1997